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THE BUCKLING OF PLATES AND BEAMS BY THE METHOD
OF ZERO LAGRANGIAN MULTIPLIERS AND

ZERO DIVISORS*

ALEXANDER WEINSTEIN

The American University, Washington, D.C.

Abstract-It is shown on a simple buckling problem, that the method of Lagrangian multipliers, which was
assumed to be a simplification of the method of intermediate problems, actually yields incorrect numerical
results.

1. INTRODUCTION

THE well-known Rayleigh-Ritz method gives upper bounds for the non-dimensional
buckling load A ofa clamped square plate compressed in all directions. In 1935 the present
author [1] found extremely close lower bounds A. for the same quantity by a procedure
which was later called, The Method ofIntermediate Problems. In this way we obtained
the inequalities A. = 5·30362 :s; A :s; 5·31173. This method has since been successfully
applied not only to buckling and vibration problems but to quantum mechanics as well,
see for instance the book of Gould [2] and the papers [3-7].

In order to use the method of intermediate problems we require a known problem
which is in the present case the buckling of a supported plate. This problem gives rough
lower bounds and is called the base problem. By adding some constraints we obtain inter
mediate problems, which can be explicitly solved using the base problem and which give
improving lower bounds.

Later Trefftz [8, 9] reconsidered the problem and suggested an apparently simplified
version-the so-called method of Lagrange multipliers-of our earlier approach. Other
authors, (for instance, Budianskyand Hu [10]; see also [11-14]) have used and extended
the method of Lagrangian multipliers which by now has found its way into a number of
texts and handbooks on structural mechanics. Unfortunately, these authors fail to point
out the care needed in applying the method to avoid possible errors in calculation of
lower bounds. In the present paper, we show, through a simple example, the dangers that
exist and how they can be circumvented by the method of intermediate problems.

We shall retain the terminology of [10], even though such multipliers occur in most
variational problems and are not exclusively related to buckling.

2. ILLUSTRATIVE EXAMPLE OF THE BUCKLING OF A CLAMPED BEAM

We shall consider the Trefftz procedure in the simplest case of the buckling ofa clamped
beam in agreement with the statement [10, p.7] that a simple example should be used
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"in order that the method of application of Lagrangian multipliers may be most clearly
presented without the obscuring details of analysis of more complicated problems." Just as
in the preliminary illustrative example of [10] the exact solution is known but in order to
present our analysis we shall not use it.

Since we are using non-dimensional quantities, we consider a beam oflength n, 0 :::;; x :::;; n.
We denote by w(x) the deflection of the beam and put

M(w) = f (w")z dx

and

J(w) = f (w')Z dx.

The non-dimensional buckling load i\. is given by the minimum of M(w) under the
following side conditions:

J(w) = 1

w(O) = w(n) = 0

w'(O) = w'(n) = O.

(1)

(2)

(It is known that i\. = 4. However, what is not always realized, but is relevant for the
following is that 4 is the second buckling load of the supported beam.)

The most general function satisfying the condition (1) is given by

00

w(x) = L: al' sin J1.X.
1'=1

Following [10], we replace the condition (2) by the conditions

00

L(-I)"J1.al'=O.
1'=1

These lead to the two side conditions

L rar = 0, r = 1, 3, 5, ...

and

L sa•. = 0, S = 2, 4, 6, ....

(3)

(4)

Taking the two conditions (3) and (4), we ought to obtain the exact value. However,
following the procedure of Trefftz and others, we shall actually obtain a value not only
greater than the exact value, but greater than the easily computed Rayleigh-Ritz upper
bound 4'3, a result which is incorrect.

We denote by A the allegedly unknown buckling load and introduce the Lagrangian
multipliers nYI and nyz. We consider the quantity

L(w) = M(w)-U(w)-nYILrar-nYzLsa.
r= 1.3.5•... • =Z.4.6 •...
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or

(7)

s = 2,4,6, ...

r = 1,3,5....

1
}'2L~=0,

S -1\

In order to find the unknowns at , a2' ... and Awe set oLMa,.. = 0, J1 = 1, 2, ... , and obtain
the following sets of equations:

r 2(r2 -A)ar = }'tr; r = 1,3,5,... (5)

S2(S2 - A)a. = }'2S; s = 2, 4, 6, . .. . (6)

Trefftz adds in his paper an incorrect remark excluding the possibility of all multipliers
being zero, in the present case }'t = }'2 = O. His reasoning in our case would be that if
}'t = }'2 = 0, then by (5) and (6) all a,.. would be zero. However, he overlooks the fact that
the value of Acould be such that one of the factors in his equations corresponding to our
(5) and (6) is zero.

Let us prove in a correct way that}'t and}'2 are not both zero. As we know already that
A S; 4,3, we must consider only the possibilities A = 12 and A = 22, which are the first
and second buckling loads of a supported beam.

If A = 1, then by (5) and (6) we have a2 = a3 = a4 = ... = 0 and at is seemingly
arbitrary since it satisfies the equation O. at = O. However, from the condition (3) it
follows that at = 0, so that w(x) == O. Similarly, if A = 4, we again get w(x) == O. Let us note
in passing that Budiansky and Hu do not consider the vanishing of multipliers in their
illustrative example.

Following the possibly erroneous procedure by neglecting the possibility of zero
divisors [10, p. 12], solving (5) and (6) and substituting in (3) and (4) we obtain the equations

1
}'t L r2_ A = 0,

with finite coefficients for }'t and }'2'
Since the case }'t = }'2 = 0 has been correctly excluded, the determinant W(A) of the

pair of equations (7~ which is the product of the two series, must be zero. As we know the
closed forms of these series from the calculus, we have the equation W(A) = 0 or

(8)

which can be written as

(9)84
1

[tan 1tfl-1tfl] = O.

According to Trefftz, we have now to find the lowest positive root of the equation (8).
The first bracket in (8) has the roots 22, 42, 62, ••• , but the second bracket is infinite for

A :::: 22,42,62
, ••• so that the value ofthe product is equal to -n2/(16)(2)2, -n2/(16)(4)2, . .. ,

as can be seen also from (9). Therefore the smallest root is given by the smallest zero of (9),
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and is definitely greater than 6·25. Let us emphasize here that the Trefftz procedure is not
the Rayleigh-Ritz method. Therefore, the value A > 6·25 > 4·3 shows that the tacit
assumption of non-vanishing divisors leads to erroneous results.

We shall now give the correct solution by adapting the method ofintermediate problems
to the present case. As A::; 4'3, there is no reason to exclude the possible values A= 12 or
), = 22 in (5) and (6).

Assuming for the moment that l = 1, we see from (5) that O. al 1'1' from which it
follows that 1'1 = 0 and that al is seemingly arbitrary. It follows that a3 = as = ... = O.
Moreover, in order to satisfy the equation (3), al must also be zero. As to the equation (6)
none of the factors (S2 - l) is zero for A = 1 and therefore 1'2 # 0 since not all as are zero.
Therefore, the divisors are not zero but the equation

1
l:~=0,

S -I'.
s = 2,4,6, ...

is not satisfied for A = 1.
Now consider the possibility A= 4. Using the same reasoning as above we find this

time that all as = 0, s = 2, 4, 6, .... Furthermore, we must check to see whether or not
A= 4 is the smallest positive root of the first factor in (8~ namely, 1t/4,JAtan 1t,JAl2. This
is indeed true, so that we have proved that A is actually equal to 4.

3. CONCLUDING REMARKS

In view of the preceding discussion of the buckling of the beam we believe it to be
superfluous to discuss separately and in detail the other cases considered by Trefftz and
others. Neither shall we discuss here some vibration problems for clamped plates in which
the determination of higher frequencies is of interest. In most cases we would encounter
the same difficulties in the equation corresponding to W(l) = O. Also the case of vanishing
Lagrangian multipliers cannot always be excluded. The method of intermediate problems
provides simple and clear rules which cover every eventuality without having to go through
a labyrinth of many separate cases, as we did above.
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A6c:TpaKT-,lloKa3bIlllleTclI Ha JlpOCTOM JlpHMepe BhlJIY'lHIlllHHlI, 'ITO MeTo.ll. MHOlll:HTeJlell JIarpaHlIl:a,
KOTOPhlll pacCMaTpHBaeTClI KaK yJIpOWeHHe MeTO,lla npoMClIl:YTo'lHbIX 3a,lla'l, npHBO,llHT B,lleltcTBHTenbHOCTH
KHeTO'lHbIM '1HCJleHHblM pe3YJlbTaTaM.


